Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

نویسندگان

  • Thomas Ganner
  • Jürgen Sattelkow
  • Bernhard Rumpf
  • Manuel Eibinger
  • David Reishofer
  • Robert Winkler
  • Bernd Nidetzky
  • Stefan Spirk
  • Harald Plank
چکیده

In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focused Electron Beam Induced Deposition – Principles and Applications

Focused electron beam induced deposition (FEBID) is a direct beam writing technique for nanoand micro-structures. By proper selection of the precursor gas, which is dissociated in the focus of the electron beam, different functionalities of the resulting deposits can be obtained. This contribution discusses nano-granular FEBID materials. Quite generally, nano-granular metals can be considered a...

متن کامل

Proton beam writing a platform technology for high quality three- dimensional metal mold fabrication for nanofluidic applications

Direct write nanolithographic techniques are powerful techniques to fabricate masters for nano-imprint lithography (NIL). Proton beam writing (PBW) is a relatively new technique which has shown great potential in fabricating three-dimensional (3D) nanostructures in polymer resist material down to the 20 nm level. MeV protons generate secondary electrons and like in many lithographic processes t...

متن کامل

Magnetic Characterization of Direct-Write Free-Form Building Blocks for Artificial Magnetic 3D Lattices

Three-dimensional (3D) nanomagnetism, where spin configurations extend into the vertical direction of a substrate plane allow for more complex, hierarchical systems and the design of novel magnetic effects. As an important step towards this goal, we have recently demonstrated the direct-write fabrication of freestanding ferromagnetic 3D nano-architectures of ferromagnetic CoFe in shapes of nano...

متن کامل

Gas-Mediated Electron Beam Induced Etching – From Fundamental Physics to Device Fabrication

Gas-mediated electron beam induced etching (EBIE) is a nanoscale, direct-write technique analogous to gas-assisted focused ion beam (FIB) milling. The main advantage of EBIE is the elimination of sputtering and ion implantation during processing as well as greater material selectivity [1]. Here we discuss recent developments that expand the scope of EBIE applications in nanofabrication and defe...

متن کامل

Controlling the physicochemical state of carbon on graphene using focused electron-beam-induced deposition.

Focused electron-beam-induced deposition (FEBID) is a promising nanolithography technique using "direct-write" patterning by carbon line and dot deposits on graphene. Understanding interactions between deposited carbon molecules and graphene enables highly localized modification of graphene properties, which is foundational to the FEBID utility as a nanopatterning tool. In this study, we demons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016